Bellman-Ford与SPFA算法
Bellman–Ford 算法
Bellman–Ford 算法是一种基于松弛(relax)操作的最短路算法,可以求出有负权的图的最短路,并可以对最短路不存在的情况进行判断。
在国内 OI 界,你可能听说过的「SPFA」,就是 Bellman–Ford 算法的一种实现。
过程
先介绍 Bellman–Ford 算法要用到的松弛操作(Dijkstra 算法也会用到松弛操作)。

对于边 ,松弛操作对应下面的式子:。
这么做的含义是显然的:我们尝试用 (其中 的路径取最短路)这条路径去更新 点最短路的长度,如果这条路径更优,就进行更新。
Bellman–Ford 算法所做的,就是不断尝试对图上每一条边进行松弛。我们每进行一轮循环,就对图上所有的边都尝试进行一次松弛操作,当一次循环中没有成功的松弛操作时,算法停止。
每次循环是 的,那么最多会循环多少次呢?
在最短路存在的情况下,由于一次松弛操作会使最短路的边数至少 ,而最短路的边数最多为 ,因此整个算法最多执行 轮松弛操作。故总时间复杂度为 。
但还有一种情况,如果从 点出发,抵达一个负环时,松弛操作会无休止地进行下去。注意到前面的论证中已经说明了,对于最短路存在的图,松弛操作最多只会执行 轮,因此如果第 轮循环时仍然存在能松弛的边,说明从 点出发,能够抵达一个负环。
负环判断中存在的常见误区
需要注意的是,以 点为源点跑 Bellman–Ford 算法时,如果没有给出存在负环的结果,只能说明从 点出发不能抵达一个负环,而不能说明图上不存在负环。
因此如果需要判断整个图上是否存在负环,最严谨的做法是建立一个超级源点,向图上每个节点连一条权值为 0 的边,然后以超级源点为起点执行 Bellman–Ford 算法。
实现
队列优化:SPFA
即 Shortest Path Faster Algorithm。
很多时候我们并不需要那么多无用的松弛操作。
很显然,只有上一次被松弛的结点,所连接的边,才有可能引起下一次的松弛操作。
那么我们用队列来维护「哪些结点可能会引起松弛操作」,就能只访问必要的边了。
SPFA 也可以用于判断 点是否能抵达一个负环,只需记录最短路经过了多少条边,当经过了至少 条边时,说明 点可以抵达一个负环。
虽然在大多数情况下 SPFA 跑得很快,但其最坏情况下的时间复杂度为 ,将其卡到这个复杂度也是不难的,所以考试时要谨慎使用(在没有负权边时最好使用 Dijkstra 算法,在有负权边且题目中的图没有特殊性质时,若 SPFA 是标算的一部分,题目不应当给出 Bellman–Ford 算法无法通过的数据范围)。