LogoCSP Wiki By Yundou
图论

树基础知识

引入

图论中的树和现实生活中的树长得一样,只不过我们习惯于处理问题的时候把树根放到上方来考虑。这种数据结构看起来像是一个倒挂的树,因此得名。

定义

一个没有固定根结点的树称为 无根树(unrooted tree)。无根树有几种等价的形式化定义:

  • nn 个结点,n1n-1 条边的连通无向图

  • 无向无环的连通图

  • 任意两个结点之间有且仅有一条简单路径的无向图

  • 任何边均为桥的连通图

  • 没有圈,且在任意不同两点间添加一条边之后所得图含唯一的一个圈的图

在无根树的基础上,指定一个结点称为 ,则形成一棵 有根树(rooted tree)。有根树在很多时候仍以无向图表示,只是规定了结点之间的上下级关系,详见下文。

有关树的定义

适用于无根树和有根树

  • 森林(forest):每个连通分量(连通块)都是树的图。按照定义,一棵树也是森林。

  • 生成树(spanning tree):一个连通无向图的生成子图,同时要求是树。也即在图的边集中选择 n1n - 1 条,将所有顶点连通。

  • 无根树的叶结点(leaf node):度数不超过 11 的结点。

  • 有根树的叶结点(leaf node):没有子结点的结点。

只适用于有根树

  • 父亲(parent node):对于除根以外的每个结点,定义为从该结点到根路径上的第二个结点。
    根结点没有父结点。
  • 祖先(ancestor):一个结点到根结点的路径上,除了它本身外的结点。
    根结点的祖先集合为空。
  • 子结点(child node):如果 uuvv 的父亲,那么 vvuu 的子结点。
    子结点的顺序一般不加以区分,二叉树是一个例外。
  • 结点的深度(depth):到根结点的路径上的边数。
  • 树的高度(height):所有结点的深度的最大值。
  • 兄弟(sibling):同一个父亲的多个子结点互为兄弟。
  • 后代(descendant):子结点和子结点的后代。
    或者理解成:如果 uuvv 的祖先,那么 vvuu 的后代。
图片描述
  • 子树(subtree):删掉与父亲相连的边后,该结点所在的子图。
图片描述

特殊的树

  • 链(chain/path graph):满足与任一结点相连的边不超过 22 条的树称为链。

  • 菊花/星星(star):满足存在 uu 使得所有除 uu 以外结点均与 uu 相连的树称为菊花。

  • 有根二叉树(rooted binary tree):每个结点最多只有两个儿子(子结点)的有根树称为二叉树。常常对两个子结点的顺序加以区分,分别称之为左子结点和右子结点。
    大多数情况下,二叉树 一词均指有根二叉树。

  • 完整二叉树(full/proper binary tree):每个结点的子结点数量均为 0 或者 2 的二叉树。换言之,每个结点或者是树叶,或者左右子树均非空。

图片描述
  • 完全二叉树(complete binary tree):只有最下面两层结点的度数可以小于 2,且最下面一层的结点都集中在该层最左边的连续位置上。
图片描述
  • 完美二叉树(perfect binary tree):所有叶结点的深度均相同,且所有非叶节点的子节点数量均为 2 的二叉树称为完美二叉树。
图片描述

Proper binary tree 的汉译名称不固定,且完全二叉树和满二叉树的定义在不同教材中定义不同,遇到的时候需根据上下文加以判断。

OIers 所说的「满二叉树」多指完美二叉树。

存储

只记录父结点

用一个数组 parent[N] 记录每个结点的父亲结点。

这种方式可以获得的信息较少,不便于进行自顶向下的遍历。常用于自底向上的递推问题中。

邻接表

  • 对于无根树:为每个结点开辟一个线性列表,记录所有与之相连的结点。
    std::vector<int> adj[N];
  • 对于有根树:
    • 方法一:若给定的是无向图,则仍可以上述形式存储。下文将介绍如何区分结点的上下关系。
    • 方法二:若输入数据能够确保结点的上下关系,则可以利用这个信息。为每个结点开辟一个线性列表,记录其所有子结点;若有需要,还可在另一个数组中记录其父结点。
      std::vector<int> children[N];
      int parent[N];
      当然也可以用其他方式(如链表)替代 std::vector

左孩子右兄弟表示法

过程

对于有根树,存在一种简单的表示方法。

首先,给每个结点的所有子结点任意确定一个顺序。

此后为每个结点记录两个值:其 第一个子结点 child[u] 和其 下一个兄弟结点 sib[u]。若没有子结点,则 child[u] 为空;若该结点是其父结点的最后一个子结点,则 sib[u] 为空。

实现

遍历一个结点的所有子结点可由如下方式实现。

int v = child[u];  // 从第一个子结点开始
while (v != EMPTY_NODE) {
  // ...
  // 处理子结点 v
  // ...
  v = sib[v];  // 转至下一个子结点,即 v 的一个兄弟
}

也可简写为以下形式。

for (int v = child[u]; v != EMPTY_NODE; v = sib[v]) {
  // ...
  // 处理子结点 v
  // ...
}

二叉树

需要记录每个结点的左右子结点。

示例代码

int parent[N];
int lch[N], rch[N];
// -- or --
int child[N][2];

On this page